Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Int J Pharm ; 657: 124177, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38697582

ABSTRACT

We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.

2.
J Phys Chem Lett ; 15(16): 4367-4374, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38619891

ABSTRACT

Understanding deracemization is crucial for progress in chiral chemistry, especially for improving separation techniques. Here, we first report the phenomenon of chiral flipping (or reverse deracemization) in a chiral material (i.e., sodium chlorate crystals) during Viedma deracemization, employing a small-volume reactor system for precise analysis. We observe considerable chiral flipping, influenced by the initial imbalance in the numbers of L- and D-form particles. We developed a simple probabilistic model to further elucidate this behavior. We find that the fluctuation in the populations of chiral crystal particles resulting from their random dissolution and regeneration is the key factor behind chiral flipping. This study not only brings to light this intriguing observation of chiral flipping but also contributes to the enhancement of deracemization techniques.

3.
Nutrients ; 16(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474770

ABSTRACT

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Subject(s)
Flavonoids , Sepsis , Shock, Septic , Mice , Animals , Sirtuin 1/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Shock, Septic/drug therapy , Endotoxins , Cytokines/metabolism , Sepsis/drug therapy , Anti-Inflammatory Agents/therapeutic use
4.
Pharmaceutics ; 16(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38258132

ABSTRACT

Reflux esophagitis, a treatment for gastric ulcers known as Ilaprazole (Ila), is not stable during storage and handling at room temperature, requiring storage at 5 degrees Celsius. In this study, to address these issues with Ila, coformers rich in oxygen (O) and hydroxyl (OH) groups capable of forming hydrogen bonds with were selected. These coformers included Xylitol (Xyl), Meglumine (Meg), Nicotinic acid (Nic), L-Aspartic acid (Asp), and L-Glutamic acid (Glu). A 1:1 physical mixture of Ila and each coformer was prepared, and the potential for cocrystal formation was predicted using differential scanning calorimetry (DSC) screening. The results indicated the potential for cocrystal formation in the Ila/Xyl physical mixture. Subsequently, Ila and Xyl were mixed in ethyl acetate (EA) in a 1:1 ratio, and after 28 h of slurry, the formation of Ila/Xyl cocrystal was confirmed through solid-state CP/MAS 13C NMR spectrum analysis, showing intermolecular hydrogen bonding and conformational changes. Furthermore, the 1:1 ratio of Ila/Xyl cocrystal was confirmed through solution-state NMR (1H, 13C, and 2D) molecular structure analysis. To assess the stability of Ila/Xyl cocrystal at room temperature, it was stored and compared with Ila at 25 ± 2 °C and relative humidity (RH) of 65 ± 5% over three months. The results showed that the purity of Ila/Xyl cocrystal remained at 99.8% from the initial purity of 99.75% over the three months, while Ila was predicted to decrease from an initial 99.8% purity to 90% after three months. Additionally, at 25 ± 2 °C and RH 65 ± 5%, a specific impurity B in Ila/Xyl cocrystal was observed to be 0.03% over three months, whereas Ila was predicted to increase from an initial 0.032% to 2.28% after three months. To evaluate the dissolution rate of Ila/Xyl cocrystal, a formulation was prepared and compared with Ila at pH 10, with a dosage equivalent to 10 mg of Ila. The results showed that Ila/Xyl cocrystal reached 55% within 15 min and 100% within 45 min, while Ila was predicted to reach 32% at 15 min and 100% only after 60 min. However, overall, the Ila/Xyl cocrystal showed results equivalent to or exceeding the dissolution rate of Ila. Therefore, it is predicted that the Ila/Xyl cocrystal will maximize its effectiveness as a more convenient crystal structure for formulation development, allowing storage and preservation at room temperature without the need for the problematic 5 °C refrigeration during ambient conditions and storage, addressing the issues associated with Ila.

5.
Small ; 19(52): e2305246, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635119

ABSTRACT

Pure δ-formamidinium lead triiodide (δ-FAPbI3 ) single crystal for highly efficient perovskite solar cell (PCS) with long-term stability is prepared by a new method consisting of liquid phase reaction of FAI and PbI2 in N,N-dimethyl formamide and antisolvent crystallization using acetonitrile. In this method, the incorporation of any impurity into the crystal is excluded by the molecular recognition of the crystal growth site. This pure crystal is used to fabricate α-FAPbI3 inverted PSCs which showed excellent power conversion efficiency (PCE) due to much-reduced trap-states. The champion device exhibited a high PCE of 23.48% under the 1-Sun condition. Surface-treated devices with 3-(aminomethyl)pyridine showed a significantly improved PCE of 25.07%. In addition, the unencapsulated device maintained 97.22% of its initial efficiency under continuous 1-Sun illumination for 1,000 h at 85 °C in an N2 atmosphere ensuring long-term thermal and photo stabilities of PSCs, whereas the control device kept only 89.93%.

6.
Biol Proced Online ; 25(1): 17, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328878

ABSTRACT

BACKGROUND: Deinococcus radiodurans is a robust bacterium that can withstand harsh environments that cause oxidative stress to macromolecules due to its cellular structure and physiological functions. Cells release extracellular vesicles for intercellular communication and the transfer of biological information; their payload reflects the status of the source cells. Yet, the biological role and mechanism of Deinococcus radiodurans-derived extracellular vesicles remain unclear. AIM: This study investigated the protective effects of membrane vesicles derived from D. radiodurans (R1-MVs) against H2O2-induced oxidative stress in HaCaT cells. RESULTS: R1-MVs were identified as 322 nm spherical molecules. Pretreatment with R1-MVs inhibited H2O2-mediated apoptosis in HaCaT cells by suppressing the loss of mitochondrial membrane potential and reactive oxygen species (ROS) production. R1-MVs increased the superoxide dismutase (SOD) and catalase (CAT) activities, restored glutathione (GSH) homeostasis, and reduced malondialdehyde (MDA) production in H2O2-exposed HaCaT cells. Moreover, the protective effect of R1-MVs against H2O2-induced oxidative stress in HaCaT cells was dependent on the downregulation of mitogen-activated protein kinase (MAPK) phosphorylation and the upregulation of the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Furthermore, the weaker protective capabilities of R1-MVs derived from ΔDR2577 mutant than that of the wild-type R1-MVs confirmed our inferences and indicated that SlpA protein plays a crucial role in R1-MVs against H2O2-induced oxidative stress. CONCLUSION: Taken together, R1-MVs exert significant protective effects against H2O2-induced oxidative stress in keratinocytes and have the potential to be applied in radiation-induced oxidative stress models.

7.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240208

ABSTRACT

Sepsis, characterized by an uncontrolled host inflammatory response to infections, remains a leading cause of death in critically ill patients worldwide. Sepsis-associated thrombocytopenia (SAT), a common disease in patients with sepsis, is an indicator of disease severity. Therefore, alleviating SAT is an important aspect of sepsis treatment; however, platelet transfusion is the only available treatment strategy for SAT. The pathogenesis of SAT involves increased platelet desialylation and activation. In this study, we investigated the effects of Myristica fragrans ethanol extract (MF) on sepsis and SAT. Desialylation and activation of platelets treated with sialidase and adenosine diphosphate (platelet agonist) were assessed using flow cytometry. The extract inhibited platelet desialylation and activation via inhibiting bacterial sialidase activity in washed platelets. Moreover, MF improved survival and reduced organ damage and inflammation in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. It also prevented platelet desialylation and activation via inhibiting circulating sialidase activity, while maintaining platelet count. Inhibition of platelet desialylation reduces hepatic Ashwell-Morell receptor-mediated platelet clearance, thereby reducing hepatic JAK2/STAT3 phosphorylation and thrombopoietin mRNA expression. This study lays a foundation for the development of plant-derived therapeutics for sepsis and SAT and provides insights into sialidase-inhibition-based sepsis treatment strategies.


Subject(s)
Myristica , Sepsis , Thrombocytopenia , Mice , Animals , Blood Platelets/metabolism , Neuraminidase/metabolism , Thrombocytopenia/drug therapy , Thrombocytopenia/etiology , Punctures/adverse effects , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism
8.
ACS Omega ; 8(19): 17116-17121, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37214728

ABSTRACT

Glycine had three polymorphs, two metastable phases (α-glycine, ß-glycine) and one stable phase (γ-glycine). However, the phase transformation of glycine from α-phase to γ-phase was well known as the kinetically unfavorable process. In this study, a simple and effective grinding method for phase transformation of glycine from α-phase to γ-phase is proposed. In an aqueous solution, α-glycine and γ-glycine had bulk solubilities of 180 and ∼172 g/L, respectively. According to the Ostwald-Freundlich equation, however, as the crystal size of α-glycine was reduced to ∼0.6 µm by grinding, the saturated concentration of α-glycine increased from 180 to 191 g/L. As long as the solution concentration exceeds a critical point (σ = 0.1), it can be possible to suddenly induce the nucleation of γ-glycine by grinding the α-glycine crystal in the solution. Subsequently, the complete transformation of α-phase to γ-phase was achieved without additives. Similarly, the grinding method was effective for producing the γ-glycine crystal in the cooling crystallization whereas the α-glycine crystal was always produced in the cooling crystallization without grinding. This study showed that physical grinding can effectively facilitate phase transformation by triggering the nucleation of stable polymorph.

9.
Curr Issues Mol Biol ; 45(3): 2284-2295, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36975517

ABSTRACT

Although vaccines and antiviral drugs are available, influenza viruses continue to pose a significant threat to vulnerable populations globally. With the emergence of drug-resistant strains, there is a growing need for novel antiviral therapeutic approaches. We found that 18-hydroxyferruginol (1) and 18-oxoferruginol (2) isolated from Torreya nucifera exhibited strong anti-influenza activity, with 50% inhibitory concentration values of 13.6 and 18.3 µM against H1N1, 12.8 and 10.8 µM against H9N2, and 29.2 µM (only compound 2) against H3N2 in the post-treatment assay, respectively. During the viral replication stages, the two compounds demonstrated stronger inhibition of viral RNA and protein in the late stages (12-18 h) than in the early stages (3-6 h). Moreover, both compounds inhibited PI3K-Akt signaling, which participates in viral replication during the later stages of infection. The ERK signaling pathway is also related to viral replication and was substantially inhibited by the two compounds. In particular, the inhibition of PI3K-Akt signaling by these compounds inhibited viral replication by sabotaging influenza ribonucleoprotein nucleus-to-cytoplasm export. These data indicate that compounds 1 and 2 could potentially reduce viral RNA and viral protein levels by inhibiting the PI3K-Akt signaling pathway. Our results suggest that abietane diterpenoids isolated from T. nucifera may be potent antiviral candidates for new influenza therapies.

10.
J Phys Chem Lett ; 14(3): 785-790, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36652610

ABSTRACT

We report spontaneous chiral symmetry breaking in the evaporative crystallization of sodium chlorate by controlling the solution volume. We determine the critical volume, below which complete chiral symmetry breaking spontaneously occurs. This can be explained with regard to the rare probability of the simultaneous formation of multiple nuclei in a small volume, depletion attributed to the rapid consumption of surrounding sodium chlorate molecules upon crystal growth, and secondary nucleation. This study offers an important methodology for studying the chiral symmetry breaking behaviors in various chiral nanomaterials and organic molecules.

11.
Cells ; 11(18)2022 09 08.
Article in English | MEDLINE | ID: mdl-36139376

ABSTRACT

Plant-derived extracellular vesicles, (EVs), have recently gained attention as potential therapeutic candidates. However, the varying properties of plants that are dependent on their growth conditions, and the unsustainable production of plant-derived EVs hinder drug development. Herein, we analyzed the secondary metabolites of Aster yomena callus-derived EVs (AYC-EVs) obtained via plant tissue cultures and performed an immune functional assay to assess the potential therapeutic effects of AYC-EVs against inflammatory diseases. AYC-EVs, approximately 225 nm in size, were isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation. Metabolomic analysis, using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS), revealed that AYC-EVs contained 17 major metabolites. AYC-EVs inhibited the phenotypic and functional maturation of LPS-treated dendritic cells (DCs). Furthermore, LPS-treated DCs exposed to AYC-EVs showed decreased immunostimulatory capacity during induction of CD4+ and CD8+ T-cell proliferation and activation. AYC-EVs inhibited T-cell reactions associated with the etiology of asthma in asthmatic mouse models and improved various symptoms of asthma. This regulatory effect of AYC-EVs resembled that of dexamethasone, which is currently used to treat inflammatory diseases. These results provide a foundation for the development of plant-derived therapeutic agents for the treatment of various inflammatory diseases, as well as providing an insight into the possible mechanisms of action of AYC-EVs.


Subject(s)
Asthma , Extracellular Vesicles , Animals , Cell Proliferation , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Extracellular Vesicles/physiology , Lipopolysaccharides/pharmacology , Mice
12.
Anal Chim Acta ; 1221: 340137, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35934408

ABSTRACT

A novel strategy utilizing the quartz crystal microbalance (QCM) was developed for the in situ discrimination of polymorphic nucleation (form-I and form-II) and phase transformation of sulfamerazine (SMZ) in cooling crystallization. According to Ostwald's rule of stages, metastable form-I of SMZ is first nucleated and then shifted to stable form-II by solution-mediated phase transformation. Through surface modification with the self-assembled monolayer technique of a functional group, QCM distinctively detects the formation of the two polymorphs. The results indicated that -NH2 (among the several functional groups tested) selectively accommodated stable form-II on the QCM sensor's surface and completely prevented the adsorption of metastable form-I on the surface. Therefore, the-NH2-terminated QCM detected the formation of form-I only using the solution viscosity variation on the surface. However, it monitored the nucleation and growth of form-II via the solid mass change on the surface during the phase transformation of form-I to form-II. This strategy suggests a new and precise solution for in situ discrimination of SMZ polymorphs and their phase transformation.


Subject(s)
Quartz Crystal Microbalance Techniques , Sulfamerazine , Crystallization , Quartz , Sulfamerazine/chemistry
13.
J Microbiol Biotechnol ; 32(7): 835-843, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35719091

ABSTRACT

Deinococcus radiodurans is an extremophilic bacterium that can thrive in harsh environments. This property can be attributed to its unique metabolites that possess strong antioxidants and other pharmacological properties. To determine the potential of D. radiodurans R1 lysate (DeinoLys) as a pharmacological candidate for inflammatory bowel disease (IBD), we investigated the anti-inflammatory activity of DeinoLys in bone marrow-derived dendritic cells (BMDCs) and a colitis mice model. Lipopolysaccharide (LPS)-stimulated BMDCs treated with DeinoLys exhibited alterations in their phenotypic and functional properties by changing into tolerogenic DCs, including strongly inhibited proinflammatory cytokines (TNF-α and IL-12p70) and surface molecule expression and activated DC-induced T cell proliferation/activation with high IL-10 production. These phenotypic and functional changes in BMDCs induced by DeinoLys in the presence of LPS were abrogated by IL-10 neutralization. Furthermore, oral administration of DeinoLys significantly reduced clinical symptoms against dextran sulfate sodium-induced colitis, including body weight loss, disease activity index, histological severity in colon tissue, and lower myeloperoxidase level in mice. Our results establish DeinoLys as a potential anti-inflammatory candidate for IBD therapy.


Subject(s)
Colitis , Deinococcus , Inflammatory Bowel Diseases , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Cytokines/metabolism , Deinococcus/metabolism , Dendritic Cells/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL
14.
Chemosphere ; 286(Pt 2): 131679, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34375833

ABSTRACT

We prepared two-dimensional (2D) stack-structured magnetic iron oxide (Fe3O4) nanoparticle anchored titanium carbide (Ti3C2Tx) MXene material (Ti3C2Tx/Fe3O4). It was used as a potential adsorbent to remove carcinogenic cationic dyes, such as methylene blue (MB) and rhodamine B (Rh B), from aqueous solutions. Ti3C2Tx/Fe3O4 exhibited maximum adsorption capacities of 153 and 86 mg g-1 for MB and Rh B dyes, respectively. Batch adsorption experimental data fits the Langmuir model well, revealing monolayer adsorption of MB and Rh B onto the adsorption sites of Ti3C2Tx/Fe3O4. Additionally, Ti3C2Tx/Fe3O4 showed rapid MB/Rh B adsorption kinetics and attained equilibrium within 45 min. Moreover, Ti3C2Tx/Fe3O4 demonstrated recyclability over four cycles with high stability due to the presence of magnetic Fe3O4 nanoparticles. Furthermore, it exhibited remarkable selectivities of 91% and 88% in the presence of co-existing cationic and anionic dyes, respectively. Given the extraordinary adsorption capacities, Ti3C2Tx/Fe3O4 may be a promising material for the effective removal of cationic dyes from aqueous media.


Subject(s)
Coloring Agents , Titanium , Adsorption , Ferric Compounds
15.
Int J Med Sci ; 18(14): 3299-3308, 2021.
Article in English | MEDLINE | ID: mdl-34400899

ABSTRACT

Plant tissue culture holds immense potential for the production of secondary metabolites with various physiological functions. We recently established a plant tissue culture system capable of producing secondary metabolites from Aster yomena. This study aimed to uncover the mechanisms underlying the potential therapeutic effects of Aster yomena callus pellet extract (AYC-P-E) on photoaging-induced skin pigmentation. Excessive melanogenesis was induced in B16F10 melanoma cells using α-melanocyte stimulating hormone (α-MSH). The effects of AYC-P-E treatment on melanin biosynthesis inducers and melanin synthesis inhibition were assessed. Based on the results, a clinical study was conducted in subjects with skin pigmentation. AYC-P-E inhibited melanogenesis in α-MSH-treated B16F10 cells, accompanied by decreased mRNA and protein expression of melanin biosynthesis inducers, including cyclic AMP response element-binding protein (CREB), tyrosinase, microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), and TRP-2. This anti-melanogenic effect was mediated by mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) phosphorylation. Treatment of subjects with skin pigmentation with AYC-P-E-containing cream formulations resulted in 3.33%, 7.06%, and 8.68% improvement in the melanin levels at 2, 4, and 8 weeks, respectively. Our findings suggest that AYC-P-E inhibits excessive melanogenesis by activating MEK/ERK and AKT signaling, potentiating its cosmetic applications in hyperpigmentation treatment.


Subject(s)
Aster Plant/chemistry , Facial Dermatoses/drug therapy , Hyperpigmentation/drug therapy , Melanins/antagonists & inhibitors , Plant Extracts/pharmacology , Adult , Animals , Cell Line, Tumor , Female , Humans , Hyperpigmentation/etiology , Hyperpigmentation/physiopathology , MAP Kinase Signaling System/drug effects , Melanins/biosynthesis , Mice , Middle Aged , Plant Extracts/therapeutic use , Skin Aging/physiology , Skin Cream/pharmacology , Skin Cream/therapeutic use , Skin Pigmentation/drug effects , Skin Pigmentation/radiation effects , Treatment Outcome
16.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299130

ABSTRACT

Although cisplatin is one of most effective chemotherapeutic drugs that is widely used to treat various types of cancer, it can cause undesirable damage in immune cells and normal tissue because of its strong cytotoxicity and non-selectivity. This study was conducted to investigate the cytoprotective effects of Cudrania tricuspidata fruit-derived polysaccharides (CTPS) against cisplatin-induced cytotoxicity in macrophages, lung cancer cell lines, and a mouse model, and to explore the possibility of application of CTPS as a supplement for anticancer therapy. Both cisplatin alone and cisplatin with CTPS induced a significant cytotoxicity in A549 and H460 lung cancer cells, whereas cytotoxicity was suppressed by CTPS in cisplatin-treated RAW264.7 cells. CTPS significantly attenuated the apoptotic and necrotic population, as well as cell penetration in cisplatin-treated RAW264.7 cells, which ultimately inhibited the upregulation of Bcl-2-associated X protein (Bax), cytosolic cytochrome c, poly (adenosine diphosphateribose) polymerase (PARP) cleavage, and caspases-3, -8, and -9, and the downregulation of B cell lymphoma-2 (Bcl-2). The CTPS-induced cytoprotective action was mediated with a reduction in reactive oxygen species production and mitochondrial transmembrane potential loss in cisplatin-treated RAW264.7 cells. In agreement with the results obtained above, CTPS induced the attenuation of cell damage in cisplatin-treated bone marrow-derived macrophages (primary cells). In in vivo studies, CTPS significantly inhibited metastatic colonies and bodyweight loss as well as immunotoxicity in splenic T cells compared to the cisplatin-treated group in lung metastasis-induced mice. Furthermore, CTPS decreased the level of CRE and BUN in serum. In summation, these results suggest that CTPS-induced cytoprotective action may play a role in alleviating the side effects induced by chemotherapeutic drugs.


Subject(s)
Cisplatin/toxicity , Fruit/chemistry , Macrophages/drug effects , Melanoma, Experimental/drug therapy , Moraceae/chemistry , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Animals , Antineoplastic Agents/toxicity , Apoptosis , Cell Proliferation , Female , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Macrophages/pathology , Melanoma, Experimental/chemically induced , Melanoma, Experimental/pathology , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mice, Nude , Protective Agents/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
mSphere ; 6(4): e0054321, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34319128

ABSTRACT

Streptococcus agalactiae is the leading cause of meningitis in newborns and a significant cause of invasive diseases in pregnant women and adults with underlying diseases. Antibiotic resistance against erythromycin and clindamycin in group B streptococcus (GBS) isolates has been increasing worldwide. GBS expresses the Srr1 and Srr2 proteins, which have important roles in bacterial infection. They have been investigated as novel vaccine candidates against GBS infection, with promising results. But a recent study detected non-srr1/2-expressing clinical isolates belonging to serotype III. Thus, we aimed to analyze the genotypes of non-srr1/2 GBS clinical isolates collected between 2013 and 2016 in South Korea. Forty-one (13.4%) of the 305 serotype III isolates were identified as non-srr1/2 strains, including sequence type 19 (ST19) (n = 16) and ST27 (n = 18) strains. The results of the comparative genomic analysis of the ST19/serotype III/non-srr1/2 strains further revealed four unique gene clusters. Site 4 in the srr1 gene locus was replaced by an lsa(E)-lnu(B)-aadK-aac-aph-aadE-carrying multidrug-resistant gene cluster flanked by two IS1216 transposases with 99% homology to the enterococcal plasmid pKUB3007-1. Despite the Srr1 and Srr2 deficiencies, which resulted in reduced fibrinogen binding, the adherence of non-srr1/2 strains to endothelial and epithelial cells was comparable to that of Srr1- or Srr2-expressing strains. Moreover, their virulence in mouse models of meningitis was not significantly affected. Furthermore, additional adhesin-encoding genes, including a gene encoding a BspA-like protein, which may contribute to colonization by non-srr1/2 strains, were identified via whole-genome analysis. Thus, our study provides important findings that can aid in the development of vaccines and antibiotics against GBS. IMPORTANCE Most previously isolated group B streptococcus (GBS) strains express either the Srr1 or Srr2 glycoprotein, which plays an important role in bacterial colonization and invasion. These glycoproteins are potential protein vaccine candidates. In this study, we first report GBS clinical isolates in which the srr1/2 gene was deleted or replaced with foreign genes. Despite Srr1/2 deficiency, in vitro adherence to mammalian cells and in vivo virulence in murine models were not affected, suggesting that the isolates might have another adherence mechanism that enhanced their virulence aside from Srr1/2-fibrinogen-mediated adherence. In addition, several non-srr1/2 isolates replaced the srr1/2 gene with the lnu(B) and lsa(E) antibiotic resistance genes flanked by IS1216, effectively causing multidrug resistance. Collectively, we believe that our study identifies the underlying genes responsible for the pathogenesis of new GBS serotype III. Furthermore, our study emphasizes the need for alternative antibiotics for patients who are allergic to ß-lactams and for those who are pregnant.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genes, MDR/genetics , Genotype , Multigene Family , Streptococcus agalactiae/genetics , A549 Cells , Animals , Bacterial Proteins/genetics , Genome, Bacterial , Humans , Male , Meningitis, Bacterial/microbiology , Mice , Microbial Sensitivity Tests , Streptococcal Infections/microbiology , Streptococcus agalactiae/classification , Virulence
18.
ACS Omega ; 6(16): 10745-10751, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-34056228

ABSTRACT

To utilize the chemical application of lignin (LN), a decomposition reaction was carried out to cleave chemical bonds. Indeed, a liquefaction process is essential for the chemical use of lignin to achieve a uniform reaction and maximize the chemical utility of lignin. To this end, hydroxyl radicals were adopted as a powerful oxidation agent, and FT-IR results confirmed the cleavage of the ether linkages. Additionally, the water solubility of LN significantly increased after decomposition, and dissolution levels up to 0.5 g·mL-1 were obtained. Using these high solubility properties in water, NMR and DLS analyses were performed. In particular, an average particle diameter of 300 ± 240 nm was found, corresponding to the size of polydisperse l-LN. By controlling size uniformity and using high water-solubility levels, polyurethane foams were manufactured using l-LN.

19.
Plants (Basel) ; 10(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808279

ABSTRACT

Aster yomena (A. yomena) extract has anti-inflammatory, antioxidant, anti-asthma, and anti-atopic effects. However, the commercial use of A. yomena extract requires a long processing time with specific processing steps (including heat treatment and ethanol precipitation), and there are various environmental problems. We aimed to build a system to produce A. yomena extract by culturing the callus in a bioreactor that can allow rapid process scale-up to test the effect of extract (AYC-CS-E) isolated from culture supernatant of A. yomena callus on photoaging of human keratinocytes (HaCaT) caused by ultraviolet B (UVB) exposure. Through screening analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), 17 major metabolites were tentatively identified from AYC-CS-E for the first time. The suppression of cell proliferation caused by UVB was effectively alleviated in UVB-irradiated HaCaT cells treated with AYC-CS-E. Treatment with AYC-CS-E strongly induced the formation of type I procollagen and the inhibition of elastase in UVB-irradiated HaCaT cells and significantly reduced the expression of matrix metalloproteinase (MMP)-1. In addition, treatment of UVB-irradiated HaCaT cells with AYC-CS-E effectively improved various factors associated with an inflammatory reaction, skin damage recovery, skin moisture retention, and hyper-keratinization caused by photoaging, such as reactive oxygen species (ROS), pro-inflammatory cytokines, transforming growth factor beta (TGF-ß), MMP-3, MMP-9, filaggrin, hyaluronic acid synthase 2 (HAS-2), keratin 1 (KRT-1), nuclear factor-kappa B (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) at the gene and protein levels. These results suggest that AYC-CS-E can be used as a cosmetic ingredient for various skin diseases caused by photoaging, and the current callus culture system can be used commercially to supply cosmetic ingredients.

20.
Molecules ; 26(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799689

ABSTRACT

Although our previous study revealed that gamma-irradiated chrysin enhanced anti-inflammatory activity compared to intact chrysin, it remains unclear whether the chrysin derivative, CM1, produced by gamma irradiation, negatively regulates toll-like receptor (TLR) signaling. In this study, we investigated the molecular basis for the downregulation of TLR4 signal transduction by CM1 in macrophages. We initially determined the appropriate concentration of CM1 and found no cellular toxicity below 2 µg/mL. Upon stimulation with lipopolysaccharide (LPS), CM1 modulated LPS-stimulated inflammatory action by suppressing the release of proinflammatory mediators (cytokines TNF-α and IL-6) and nitric oxide (NO) and downregulated the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Furthermore, CM1 markedly elevated the expression of the TLR negative regulator toll-interacting protein (Tollip) in dose- and time-dependent manners. LPS-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II), proinflammatory cytokines (TNF-α and IL-6), COX-2, and iNOS-mediated NO were inhibited by CM1; these effects were prevented by the knockdown of Tollip expression. Additionally, CM1 did not affect the downregulation of LPS-induced expression of MAPKs and NF-κB signaling in Tollip-downregulated cells. These findings provide insight into effective therapeutic intervention of inflammatory disease by increasing the understanding of the negative regulation of TLR signaling induced by CM1.


Subject(s)
Flavonoids/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Flavonoids/metabolism , Flavonoids/radiation effects , Inflammation/drug therapy , Interleukin-6 , Lipopolysaccharides/adverse effects , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide , RAW 264.7 Cells , Signal Transduction/drug effects , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...